Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 229: 119438, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470047

RESUMO

Much attention has been paid to Ca2+ ion removal by biomineralization due to the dangers of Ca2+ on industrial processes and human health. However, Ca2+ removal from hypersaline water by biomineralization is quite difficult due to there being few halophilic bacteria tolerating higher salinities. In this study, free and immobilized Virgibacillus massiliensis C halophilic bacteria exhibiting carbonic anhydrase activity were used to remove Ca2+ ions from water at different NaCl concentrations. With increasing NaCl concentrations (10, 50, 100, 150 and 200 g/L), Ca2+ ion concentrations in the presence of free bacteria and in two groups of immobilized bacteria for a period of 6 days sharply decreased from 1200 mg/L to 219-562 mg/L, 71-214 mg/L and 21-159 mg/L, respectively; Ca2+ precipitation ratios were 55%-81%, 82%-94% and 87%-98%, respectively. The humic acid-like substances, protein, DNA and polysaccharide, released by the bacteria, promoted the Ca2+ ion removal. The immobilized bacteria were able to be recycled and precultured, which would save industry costs and increase Ca2+ ion removal efficiency. Biological processes for Ca2+ ion removal include cell surface, intracellular and extracellular biomineralization. The biogenesis of calcium carbonate was proved by SEM-EDS, FTIR, XPS and stable carbon isotope values. This study provides insights into the effective removal of Ca2+ ions by biomineralization in hypersaline water.


Assuntos
Cálcio , Cloreto de Sódio , Humanos , Bactérias , Água , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...